
CS 421 Lecture 3CS 421 Lecture 3
Today's class: Types in OCaml and abstract syntax

Type declaration in OCamlType declaration in OCaml
Trees
Polymorphic types
Abstract syntax

Lecture 3

Type declaration in OCaml

First, type expressions are:
te = int | string | unit | … | te list | te * te * … * tete int | string | unit | … | te list | te te … te

Lecture 3

Type declaration in OCaml

type t = te
After this, t is an abbreviation for teAfter this, t is an abbreviation for te

type t = C1 [of te1] | … | Cn [of ten]
where C1 , … , Cn are constructor names – names
that start with a capital letter
Values of type t are created by applying C1 to value of type
t C t l f t t tt1, or C2 to value of type t2, etc.

Lecture 3

Example – enumerated types

Ex.
type weekday = Mon | Tues | Wed | Thurs | Fri;;
let today = Tues;;
let weekday_to_string d =
match d withmatch d with

Mon -> “Monday”
| Tues -> “Tuesday”
| … ;;

Corresponds to “enum” type in C C++:Corresponds to enum type in C, C++:
typedef enum {Mon, Tues, Wed, Thurs, Fri} weekday;

Lecture 3

Example – disjoint unions

Ex.
type shape = Circle of float

| Square of float
| Triangle of float * float * float

let c = Circle 5 7let c = Circle 5.7
let t = Triangle (2.0, 3.0, 4.0)

(Note: Triangle 2.0 3.0 4.0 is type error.)(g yp)
This corresponds to what is called discriminated union,
tagged union, disjoint union, or variant record.

Lecture 3

Example – disjoint unions (cont.)

let shape_to_string S =

match s with

Circle r -> “circle” ^ float_to_string r

| Square t -> “square” ^ float_to_string t

| Triangle (s1, s2, s3) ->| Triangle (s1, s2, s3) >

“triangle(“ ^ float_to_string s1 ^ “,” ^

float_to_string s2 ^ “,” ^

float_to_string s3 ^ “)”

Lecture 3

How to do this in C

struct shape {

int type_of_shape;

union {

struct {float radius;}

struct {float side;}struct {float side;}

struct {float side1, side2, side3;} triangle;

} shape_data;

}

Shape_to_string function would look like this:

switch (type_of_shape){

case 0: cout << “circle” << s.shape_data.radius;

t

Lecture 3

… etc. …

How to do this in Java – method 1
class Shape{

float x; // radius or side

float side2 side3;float side2, side3;

int shape_type;

Shape(int i, float f){

shape_type = i;

x = f; }

Shape(float float float){Shape(float, float, float){

shape_type = 2; x = ...;

side2 = ...; side3 = ...;

}

}

shape to string looks the same as in C

Lecture 3

shape_to_string looks the same as in C.

How to do this in Java – method 2

class Shape{

abstract string shape_to_string();

}

class Circle extends Shape {

float radius;

Shape sh;
if (…)

sh = new Circle();
Circle(float r) {radius = r;}

string shape_to_string(){

return “circle” + radius; }

sh = new Circle(…);
else

sh = new Square(…);
…

}

class Square extends Shape {

float side;

sh.shape_to_string()

float side;

Square (float s) {side = s;}

string shape_to_string(){

ret rn “sq are” + side }

Lecture 3

return “square” + side; }

}

Recursive type definitions in OCaml

In type t = C of e | … , e can include t.

type mylist = Empty | Cons of int * list

let list1 = Cons (3, Cons (4, Empty))let list1 Cons (3, Cons (4, Empty))

let rec sum x = match x with

Empty -> 0

| Cons(y,ys) -> y + sum ys

Lecture 3

Defining trees

Binary trees (with integer labels):
type bintree = Emptyyp p y

| BTNode of int * bintree * bintree

let tree1 = BTNode (3,

BTN d (6 E t E t)))BTNode (6, Empty, Empty), . . .));;

Arbitrary trees (with integer labels):Arbitrary trees (with integer labels):
type tree = Node of int * tree list

let smalltree = Node (3, [])

let bigtree = Node (3, [Node(...), Node(...), …])

Lecture 3

Trees

Ex. Create a list of all the integers in a tree. (Use
homework function flatten : (int list) list -> int list):())

let rec flatten_tree (Node (n, kids)) =

let rec flatten_list tlis = match tlis with

[] -> []

| (t :: ts) -> flatten tree t :: flatten list ts| (t :: ts) > flatten_tree t :: flatten_list ts

in n :: flatten (flatten_list kids)

Syntactic note: flatten_tree Node(…,…) would be interpreted as
(flatten_tree Node)(…,…). Since Node has type (int * tree
list) -> int list, and the argument to flatten tree should be tree,) , g _ ,
this is a type error. Need to write flatten_tree (Node(…, …))

.

Defining polymorphic types

type 'a bintree = Empty

| Node of 'a * 'a bintree * 'a bintree

let x = Node(“ben”, Empty, Empty)

let y = Node(4.5, Empty, Empty)

Although bintree is polymorphic, can still define functions
that apply only to some bintrees (as you can for lists), e.g.that apply only to some bintrees (as you can for lists), e.g.

let rec sum t = match t with

Empty -> 0 | Node(i,t1,t2) -> i + sum t1 + sum t2

sum: int bintree -> int

Lecture 3

Mutually-recursive types

Mutually-recursive types
type t = C1 of te1 |type t C1 of te1 | …
and u = D1 of te1' | …

Example given below

Lecture 3

Abstract syntax

“Deep” structure of program – represents nesting of
fragments within other fragments in the “cleanest” way g g y
possible. Can define as a type in Ocaml, e.g.

type stmt = Assign of string * expr

| If of expr * stmt * stmt

and expr = Int of int | Var of stringand expr Int of int | Var of string

| Plus of expr*expr | Greater of expr*expr

“if (x>0) y=y+1; else z=x;”
If(Greater(Var “x”, Int 0),

Assign(“y”, Plus(Var “y”, Int 1)),

Lecture 3

g (y , (y ,)),

Assign(“z”, Var “x”))

Abstract syntax (cont.)

Example: Function to find all the variables used in an
abstract syntax tree (AST):y ()

let rec vars s = match s with

Assign(x,e) -> x :: evars e

| If(e,s1,s2) -> evars e @ vars s1 @ vars s2

and evars e = match e withand evars e match e with

Int i -> []

| Var x -> [x]

| Plus(e1,e2) -> evars e1 @ evars e2

| Greater(e1,e2) -> evars e1 @ evars e2

Lecture 3

Abstract syntax (cont.)

Abstract syntax for a part of Ocaml gives example of
mutually-recursive type definitions:y yp

type decl = Decl of (string * expr) list

and expr = Int of int | Var of string

| Plus of expr * expr

| Let of decl * expr| Let of decl expr

E.g. “let x = 3 and y = 5 in x+y” would have abstract
syntax tree:

Let(Decl[(“x”, Int 3), (“y”, Int 5)],

Plus(Var “x” Var “y”)

Lecture 3

Plus(Var x , Var y)

